27 de jun. de 2009

Bombeo Mecánico - Diseño

511671791_ed4ed4b9f4_o Es uno de los métodos de producción más utilizados (80-90%), el cual su principal característica es la de utilizar una unidad de bombeo para transmitir movimiento a la bomba de subsuelo a través de una sarta de cabillas y mediante la energía suministrada por un motor. Los componentes del bombeo mecánico esta compuesto básicamente por las siguientes partes: unidad de bombeo, motor (superficie), cabillas, bomba de subsuelo, anclas de tubería, tubería de producción (subsuelo). Un equipo de bombeo mecánico (también conocido como “balancín” o “cigüeña”) produce un movimiento de arriba hacia abajo (continuo) que impulsa una bomba sumergible en una perforación. Las bombas sumergibles bombean el petróleo de manera parecida a una bomba que bombea aire a un neumático. Un motor, usualmente eléctrico, gira un par de manivelas que, por su acción, suben y bajan un extremo de una eje de metal. El otro extremo del eje, que a menudo tiene una punta curva, está unido a una barra de metal que se mueve hacia arriba y hacia abajo. La barra, que puede tener una longitud de cientos de metros, está unida a una bomba de profundidad en un pozo de petróleo. El balancín de producción, que en apariencia y principio básico de funcionamiento se asemeja al balancín de perforación a percusión, imparte el movimiento de sube y baja a la sarta de varillas de succión que mueve el pistón de la bomba, colocada en la sarta de producción o de educción, a cierta profundidad del fondo del pozo.

La válvula fija permite que el petróleo entre al cilindro de la bomba. En la carrera descendente de las varillas, la válvula fija se cierra y se abre la válvula viajera para que el petróleo pase de la bomba a la tubería de educción. En la carrera ascendente, la válvula viajera se cierra para mover hacia la superficie el petróleo que está en la tubería y la válvula fija permite que entre petróleo a la bomba. La repetición continua del movimiento ascendente y descendente (emboladas) mantiene el flujo hacia la superficie. Como en el bombeo mecánico hay que balancear el ascenso y descenso de la sarta de varillas, el contrapeso puede ubicarse en la parte trasera del mismo balancín o en la manivela. Otra modalidad es el balanceo neumático, cuya construcción y funcionamiento de la recámara se asemeja a un amortiguador neumático; generalmente va ubicado en la parte delantera del balancín. Este tipo de balanceo se utiliza para bombeo profundo.

Equipo de Subsuelo
El equipo de subsuelo es el que constituye la parte fundamental de todo el sistema de bombeo. La API ha certificado las cabillas, las tuberías de producción y bomba de subsuelo.
bm1Tubería de Producción. La tubería de producción tiene por objeto conducir el fluido que se esta bombeando desde el fondo del pozo hasta la superficie. En cuanto a la resistencia, generalmente la tubería de producción es menos crítica debido a que las presiones del pozo se han reducido considerablemente para el momento en que el pozo es condicionado para bombear.
Cabillas o Varillas de Succión. La sarta de cabillas es el enlace entre la unidad de bombeo instalada en superficie y la bomba de subsuelo. Las principales funciones de las mismas en el sistema de bombeo mecánico son: transferir energía, soportar las cargas y accionar la bomba de subsuelo. Las principales características de las cabillas son:
a) Se fabrican en longitudes de 25 pies, aunque también pueden manufacturarse de 30 pies.
b) Se dispone de longitudes de 1, 2, 3, 4, 6, 8, 10 y 12 pies denominados por lo general “niples de cabilla” que se utilizan para complementar una longitud determinada y para mover la localización de los cuellos de cabillas, a fin de distribuir el desgaste de la tubería de producción.
c) Se fabrican en diámetros de 5/8, 3/4, 7/8, 1, 1-1/8 de pulgadas.
De acuerdo a las especificaciones de la API, las cabillas de acero sólido es del tipo de cabillas más utilizado y ha sido estandarizada por la API, sus extremos son forjados para acomodar las roscas, un diseño que desde 1926 no ha cambiado hasta la fecha. Todos los efectos negativos inciden en la vida útil de las uniones de las cabillas de succión, y hacen que el 99% de los rompimientos por fatiga en los pines de la cabilla, lo cual es ocasionado por un incorrecto enrosque de la misma. Entre las principales fallas podemos encontrar: tensión, fatiga y pandeo. En la producción de crudos pesados por bombeo mecánico en pozos direccionales y algunos pozos verticales, se presenta este tipo de problema (pandeo), la corta duración de los cuellos y la tubería debido al movimiento reciproco-vertical o reciprocante (exclusivo en el bombeo mecánico) del cuello en contacto con la tubería causando un desgaste o ruptura de ambas. Para el pandeo (Buckling de cabillas) se deben colocar de 1 o 2 centralizadores por cabilla según sea la severidad. Hay cabillas que tienen centralizadores permanentes.
Entre los tipos de cabillas que existen en el mercado están: Electra, Corod (continua) y fibra de vidrio. Las cabillas continuas (Corod) fueron diseñadas sin uniones para eliminar totalmente las fallas en el PIN (macho) y la hembra para incrementar la vida de la sarta. La forma elíptica permite que una gran sarta de cabillas sea enrollada sobre rieles especiales de transporte sin dañarlas de manera permanente. Otra ventaja de este tipo de varilla es su peso promedio más liviano en comparación a las API.
Ventajas
a) La ausencia de cuellos y uniones elimina la posibilidad de fallas por desconexión.
b) La falta de uniones y protuberancias elimina la concentración de esfuerzos en un solo punto y consiguiente desgaste de la unión y de la tubería de producción.
c) Por carecer de uniones y cuellos, no se presentan los efectos de flotabilidad de cabillas.
Desventajas
a) Presentan mayores costos por pies que las cabillas convencionales.
b) En pozos completados con cabillas continuas y bomba de tubería, la reparación de la misma requiere de la entrada de una cabria convencional.
Anclas de Tubería. Este tipo esta diseñado para ser utilizados en pozos con el propósito de eliminar el estiramiento y compresión de la tubería de producción, lo cual roza la sarta de cabillas y ocasiona el desgaste de ambos. Normalmente se utiliza en pozos de alta profundidad. Se instala en la tubería de producción, siendo éste el que absorbe la carga de la tubería. Las guías de cabillas son acopladas sobre las cabillas a diferentes profundidades, dependiendo de la curvatura y de las ocurrencias anteriores de un elevado desgaste de tubería.
Bomba de Subsuelo. Es un equipo de desplazamiento positivo (reciprocante), la cual es accionada por la sarta de cabillas desde la superficie. Los componentes básicos de la bomba de subsuelo son simples, pero construidos con gran precisión para asegurar el intercambio de presión y volumen a través de sus válvulas. Los principales componentes son: el barril o camisa, pistón o émbolo, 2 o 3 válvulas con sus asientos y jaulas o retenedores de válvulas.
Pintón. Su función en el sistema es bombear de manera indefinida. Esta compuesto básicamente por anillos sellos especiales y un lubricante especial. El rango de operación se encuentra en los 10K lpc y una temperatura no mayor a los 500°F.
Funciones de la Válvula
a) Secuencia de operación de la válvula viajera: permite la entrada de flujo hacia el pistón en su descenso y posteriormente hacer un sello hermético en la carrera ascendente permitiendo la salida del crudo hacia superficie.
b) Secuencia de operación de la válvula fija: permite el flujo de petróleo hacia la bomba, al iniciar el pistón su carrera ascendente y cerrar el paso el fluido dentro del sistema bomba-tubería, cuando se inicia la carrera descendente del pistón.
Equipos de Superficie
La unidad de superficie de un equipo de bombeo mecánico tiene por objeto transmitir la energía desde la superficie hasta la profundidad de asentamiento de la bomba de subsuelo con la finalidad de elevar los fluidos desde el fondo hasta la superficie. Estas unidades pueden ser de tipo balancín o hidráulicas. Los equipos que forman los equipos de superficie se explican a continuación:
Unidad de Bombeo (Balancín). Es una máquina integrada, cuyo objetivo es de convertir el movimiento angular del eje de un motor o reciproco vertical, a una velocidad apropiada con la finalidad de accionar la sarta de cabillas y la bomba de subsuelo. Algunas de las características de la unidad de balancín son:
a) La variación de la velocidad del balancín con respecto a las revoluciones por minuto de la máquina motriz.
b) La variación de la longitud de carrera.
c) La variación del contrapeso que actúa frente a las cargas de cabillas y fluidos del pozo.
Para la selección de un balancín, se debe tener los siguientes criterios de acuerdo a la productividad y profundidad que puede tener un pozo:
Productividad
a) Los equipos deben ser capaces de manejar la producción disponible.
b) Los equipos de superficie deben soportar las cargas originadas por los fluidos y equipos de bombeo de pozo.
c) Factibilidad de disponer de las condiciones de bombeo en superficie adecuada.
Profundidad
a) La profundidad del pozo es un factor determinante de los esfuerzos de tensión, de elongación y del peso.
b) Afecta las cargas originadas por los equipos de producción del pozo.
c) Grandes profundidades necesitan el empleo de bombas de subsuelo de largos recorridos.
La disponibilidad de los balancines va a depender fundamentalmente sobre el diseño de los mismos. Los balancines sub-diseñados, limitan las condiciones del equipo de producción y en consecuencia la tasa de producción del pozo. Los balancines sobre-diseñados, poseen capacidad, carga, torque y carrera están muy por encima de lo requerido y pueden resultar muchas veces antieconómicos.
Clasificación de los Balancines
Balancines convencionales. Estos poseen un reductor de velocidad (engranaje) localizado en su parte posterior y un punto de apoyo situado en la mitad de la viga.
Balancines de geometría avanzada. Estos poseen un reductor de velocidad en su parte delantera y un punto de apoyo localizado en la parte posterior del balancín. Esta clase de unidades se clasifican en balancines mecánicamente balanceados mediante contrapesos y por balancines balanceados por aire comprimido. Los balancines de aire comprimido son 35% más pequeñas y 40% mas livianas que las que usan manivelas. Se utilizan frecuentemente como unidades portátiles o como unidades de prueba de pozo (costafuera).
Características de las Unidad de Bombeo
Convencional Balanceada por aire Mark II
1. Muy eficiente 1. La de menor eficiencia 1. Muy eficiente
2. Muy confiable debido a su diseño simple 2. Las más compleja de las unidades 2. Igual que la convencional
3. La más económica 3. La más costosa 3. Moderadamente costosa
Diseño de Equipos de Bombeo Mecánico
Es un procedimiento analítico mediante cálculos, gráficos y/o sistemas computarizados para determinar el conjunto de elementos necesarios en el levantamiento artificial de pozos accionados por cabilla. La función de este procedimiento es seleccionar adecuadamente los equipos que conforman el sistema de bombeo mecánico a fin de obtener una operación eficiente y segura con máximo rendimiento al menor costo posible.
Paso 1: se debe seleccionar el tamaño de la bomba, el diámetro óptimo del pistón, bajo condiciones normales. Esto va a depender de la profundidad de asentamiento de la bomba y el caudal de producción (Ver Tabla 1). Nota: Todas las tablas y gráficas los colocaré al final de este post para que puedan ser descargados.
Paso 2: La combinación de la velocidad de bombeo (N) y la longitud de la carrera o embolada (S), se selecciona de acuerdo a las especificaciones del pistón. Se asume una eficiencia volumétrica del 80%. (Ver gráfico 1).
Paso 3: Se debe considerar una sarta de cabillas (se debe determinar el porcentaje de distribución si se usa más de dos diámetros de cabilla) y el diámetro de pistón, se determina un aproximado de la carga máxima para el sistema en estudio. (Ver gráfico 2).
Paso 4: Chequear el valor de factor de impulso para la combinación velocidad de bombeo (N) y longitud de carrera (S) establecidos en el Paso 2 (Ver Tabla 2).
Paso 5: Cálculo de la carga máxima en la barra pulida. Para este propósito será necesario obtener cierta data tabulada de acuerdo a los datos establecidos en los pasos previos. Primero se determinará el peso de las cabillas por pie y la carga del fluido por pie. (Ver Tabla 3). Ahora se calcula el peso de las cabillas en el aire (Wr), la carga dinámica en las cabillas (CD) y la carga del fluido (CF) a la profundidad objetivo.
Wr = peso cabillas (lb/ft) x Prof. (ft)
CD = F.I. x Wr (lb) -----> Donde F.I. (Factor de Impulso)
CF = peso fluido (lb/ft) x Prof. (ft)
Carga máxima barra pulida = CD + CF
Paso 6: Cálculo de la carga mínima de operación (CM), el contrabalanceo ideal y torque máximo.
CM = Disminución de la carga debido a la aceleración (DC) – fuerza de flotación (FF)
DC = Wr x (1-C) -----> Donde C = (N^2 x S)/70500
FF = Wr x (62,5/490) -----> Valor constante
Para el contrabalanceo ideal se debe proporcionar suficiente efecto de contrabalanceo para darle suficiente valor de carga, el cual va a ser el promedio entre el máximo (carga máx. barra pulida) y el mínimo recién calculado.
Entonces,
Contrabalanceo ideal = promedio de carga (entre máx. y min) – la carga mínima.
Torque máx. = Contrabalanceo ideal x Punto medio de la longitud de carrera (S/2).
Paso 7: Estimación de poder del motor eléctrico. Conocida la profundidad de operación, °API del crudo y el caudal requerido de producción, se obtiene una constante que es multiplicada por el caudal de producción (Ver gráfico 3). Este valor obtenido son los HP necesarios justos para levantar el caudal requerido. Lo que se recomienda es que este valor obtenido se incremente de 2 a 2,5 veces para tener un factor de seguridad.
Paso 8: Cálculo de desplazamiento de la bomba. El valor obtenido de P sería el valor de caudal de producción si la bomba trabaja al 100% de eficiencia. El diseño de la bomba debe tener al menos el 80% de eficiencia. En crudos pesados debe tener un máximo de 18 strokes/minutos (promedio 15° API).
P = C S N
P = Desplazamiento de la bomba
C = Constante de la bomba, depende del diámetro del pistón
N = Velocidad de bombeo (SPM)
Paso 9: Profundidad de asentamiento de la bomba (Método Shell, Ver Tabla 3). Esto dependerá enormemente de la configuración mecánica del pozo. Si este método no cumple, por lo general se asienta a 60 o 90 pies por encima del colgador. Otras bibliografías hacen referencia que se asienta 300 pies por debajo del nivel de fluido.
Para descargar las tablas y gráficas para realizar el diseño del bombeo mecánico haz clic en el siguiente enlace.
Fragmentos de textos tomados de: Curso de Conocimientos Avanzados de Producción. L. Arditi – Bombeo Mecánico Schlumberger Seed.

36 comentarios:

  1. Hola Marcelo, soy estudiante de Ingeniería de Petróleo de Perú y al igual que tú tbn tengo un blog cuya médula de información está basada en la carrera...Tu blog me parece muy bueno por lo que me gustaría intercambiar enlaces, si te animas me dejas un mensaje en la pizarra de mi blog.

    ResponderEliminar
  2. @Energetic: Gracias por el comentario!. Bueno podemos realizar intercambio de información, pero va a depender del tiempo que tenga disponible, ya que regrese de las vacaciones y ahorita estoy algo cargado de trabajo =( Bueno aquí serás siempre bienvenido.

    Atte,
    Marcelo

    ResponderEliminar
  3. hola muchachos, yo soy estudiante de Ingenieria de Petroleos de la Universidad Surcolombina, como su mismo nombre lo indica en colombia, me parece muy completo este blog, pues indicas hasta los pasos para el diseño del bombeo mecanico, muy bien por ti y gracias por tu aporte.
    Maria Elvira

    ResponderEliminar
  4. @Maria Elvira: Gracias por el comentario. Como refleje es un método análitico. Solo sirve para hacer comparación con los diseños arrojados de los simuladores. Saludos.

    ResponderEliminar
  5. Hola amigos soy Cleopatra Suarez estudiante de petróleo en Venezuela te escribo para felicitarte ya que aquí conseguí la información de una manera muy eficaz

    ResponderEliminar
  6. Buenas noches, me parece interesante lo que publicaste; pero te invito a dejar la fuente de donde lo obtuviste. Eso servirá para aquellos que deseamos ahondar en el tema. Saludos.

    ResponderEliminar
  7. Hola Marcelo como estas, soy estudiante de Ingeniería De Petróleos de la UNIVERSIDAD INDUSTRIAL DE SANTANDER (Bucaramanga - Colombia) te felicito por tu blog, me parece muy completo y preciso. Te quiero preguntar si por casualidad tienes información acerca de las fallas que se presentan en este tipo de sistema y los materiales de los cuales están hechas las bombas, es decir tipo de acero, aleaciones etc. Te agradecería mucho si me puedes colaborar con esto. Gracias

    ResponderEliminar
  8. HOLA MARCELO SOY ESTUDIANTE DE INGENIERIA PETROLERA EN LA UAGRM DE BOLIVIA ME PARECIO MUY INTERESANTE Y DE GRAN UTILIDAD LA INFORMACION ACERCA DE UNIDADES DE BOMBEO MECANICO PERO HACE ALGUNOS EJERCICIOS Y SI ME PUEDES CONTESTAR ESTA PREGUNTA:¿EN QUE TIPO DE POZOS UTILIZAMOS LAS UNIDADES DE BOMBEO MECANICO?

    ResponderEliminar
  9. h0la mi nombres es jonathan avila estudio ing en petroleo quisiera saber cuales son las leyes fisicas q se cumplen en el diseño del balancin ya q prontro tengo un proyecto sobre ese tema y poseo poca informacion acerca de eso si alguien pudiera ayudarme mi correo es jonatha.avila@gmail.com

    ResponderEliminar
  10. @Jonathan: Gracias por el comentario. Con respecto al tema de las leyes físicas que cumplen el diseño del balancín te invito a que busques en la sección de recursos >> didácticos >> libros.

    Atte,
    Marcelo

    ResponderEliminar
  11. HOLA SOY ISABEL LOS TEMAS DE TU BLOG SON MUY INTERESANTES NO TIENES ALGUNA IDEA PARA PODER AHONDAR EN ESTO PERO QUE A LA VEZ ESTE RELACIONADO CON BOLIVIA.
    GRACIAS POR TODO LO QUE PUSISTE ME AYUDO MUCHO

    ResponderEliminar
  12. @Isabel: Gracias por el comentario, realmente no manejo información adicional sobre la aplicación de este sistema de levantamiento en alguna región/campo específico.

    Atte,
    Marcelo

    ResponderEliminar
  13. Hola soy Julio, trabajo en operaciones petroleras en Sinopecarg Sta Cruz,Argentina como,LIFT ESPECIALIST, queria comentarles que las variables que se manejan cuando se diseña instalaciones de prod. son simepre predictivas y en la practica suelen suceder corrimientos cuando se realizan mediciones fisicas, pero la verdad es que hay valores caractristicos de los crudos que modifican los calculos teoricos,e la realidad, esta es una industria que posibilita realizar muchas experiencias, con pozos profundos, desviados , dirigidos, con alto , con alto Gor, alto % de agua, bajo nivel, con produccion de solidos bombeables, alto produccion bruta, con diferencias de indices de incustracion corrosion, etc. ES VERDADERAMENTE APASIONANTE ..y ADEMAS HAY MUCHA BIBLIOGRAFIA Y EXPERIENCIA REALIZADA.

    ResponderEliminar
  14. @Julio: Gracias Julio por el valioso aporte, comparto lo que comentas, ya que a veces diseñamos muchas cosas en papel (levantamiento artificial, frac's, estimulaciones de pozos, etc...) y los resultados pueden ser dramaticamente distintos en la realidad! Y haciendo un resumen de lo que mencionas, solo la experiencia forma al ingeniero, esta carrera es un continuo aprendizaje Y VERDADERAMENTE APASIONANTE! :D

    Saludos,
    Marcelo

    ResponderEliminar
  15. como retiro o pesco una sarta de varilla de fibra de vidrio partida en el fondo de pozo

    ResponderEliminar
  16. Hola muchachos les saludo de Guatemala, mi nombre es Erick y estoy un poco en desventaja por lo que yo no soy ingeniero, pero me encuentro en estos momentos trabajando en un proyecto, personal dentro de un terreno, del cual necesito bombear agua de un pozo natural y e estado investigando acerca del tipo de bomba para bombeo de petroleo, me llamo la atención ya que esta según yo, no usa mas que una fuerza mecánica para su función, por lo cual les solicito me pudieran ayudar proporcionándome las caracterisiticas para su fabricación, les comento a mi me intereso este tipo de bomba porque donde yo me encuentro no hay ningún tipo de recurso eléctrico ya que me encuentro en el departamento de PETEN, GUATEMALA, les agradeceré cualquier información que me puedan brindar al siguiente correo izabaltv@yahoo.com gracias nuevamente por su atención y colaboración.

    ResponderEliminar
  17. hola compañeros les saludo desde Colombia, mas exactamente del Putumayo. soy belarmino felix villota, estoy estudiando un técnico sobre facilidades en producción en la escuela de "ecapetrol"
    solamente quería felicitarlos por este informe. gracias a el aclare muchas dudas sobre el bombeo mecánico
    saludos!!

    ResponderEliminar
  18. @Belarmino: Gracias por tu comentario. Saludos

    ResponderEliminar
  19. Si un pozo produce crudo pesado por Bombeo Mecánico (con balancín), y Ud. quiere aumentar la producción y debe rediseñar aumentando la carrera ( el recorrido) de las cabillas o aumentando las RPM, por cuál de las dos rutas se iría y por que?.

    ResponderEliminar
  20. Muy buena informacion, tengo una duda,
    Si un pozo produce crudo pesado por Bombeo Mecánico (con balancín), y Ud. quiere aumentar la producción y debe rediseñar aumentando la carrera ( el recorrido) de las cabillas o aumentando las RPM, por cuál de las dos rutas se iría y por que?.

    ResponderEliminar
  21. Hola Marcelo, mira soy estudiante de La universidad Industrial de Santander y me parece muy buena tu publicación, por eso quería preguntarte a que te refieres cuando mencionas las gráficas o las tablas para complementar mas la info GRACIAS ;)

    ResponderEliminar
  22. @Diana C Rojas Torres: son las gráficas para realizar el diseño de bombeo. Me parece que el link para las descargas no sirve...

    ResponderEliminar
  23. cuanto pesa un equipo de bombeo aproximadamente AIB 225

    ResponderEliminar
  24. oye amigo esta bueno tu post pero podrias poner un enlace nuevo para las graficas porque el anterior no sirve. gracias saludos desde mexico

    ResponderEliminar
  25. Hola mieren esta web donde el Colombiano Carlos Ucròs Piedrahita a diseñado una manera de sacar energia en las turbinas eòlica sin el viento utilisando estas torres de bombeo modificadas a funcionar con mi sistema KITS-UCRÒS CICLO ELÈCTRICO VER MI MODESTA WEB http://www.kits-ucros.es.tl/

    ResponderEliminar
  26. porfavorr puedes publicar denuevo el link de las tablas, graficas etc???

    ResponderEliminar
    Respuestas
    1. Subí nuevamente las gráficas, el link funciona bien... Saludos!

      Eliminar
  27. Hola los felicito por este Blog, soy técnico en producción de pozos de petroleo y me ha servido mucho el documento de bombeo mecánico. Soy de COLOMBIA - MEDELLIN

    ResponderEliminar
    Respuestas
    1. Gracias por el comentario, esa es la intención. Saludos desde Venezuela!

      Eliminar
  28. Hola soy estudiante de ing petrolera en méxico, me gustaría obtener información sobre los metales con que se construyen las partes de la unidad de bombeo, en especial de la bimba (cabezote) y el balancín, ¡muchas gracias!

    ResponderEliminar
    Respuestas
    1. Hola, gracias por el comentario. Para la respuesta a tu inquietud, te recomiendo revisar las normas API para la construcción de estas partes. De igual forma buscaré la respuesta en los próximos días. Saludos!

      Eliminar
  29. Saludos, soy originario de Venezuela pero estudie mi carrera universitaria en Estados Unidos y ahora trabajo ahí. Por ende, todos estos conceptos y definiciones los estudié en inglés. Me ha sido muy útil tu página; a través de ella he podido complementar conocimientos y aprender el lenguaje técnico de la industria en mi lengua natal.

    Fernando

    ResponderEliminar
  30. excelente informacion, me ha sidomu utili, Gracias ingeniero :

    ResponderEliminar
  31. Buen día.

    Ya que el tema es sobre bombeo mecánico, tengo una consulta: alguien sabe, par la especificación de los centralizadores de las varillas de bombeo mecánico, qué significa la especificación

    BT 3-1/2" o AT 3-1/2"

    Agradezco su colaboración y respuesta a mi duda. Gracias

    ResponderEliminar